Advanced Computer Programming
[Lecture 08]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University
Spring 1397-98

INPUT/OUTPUT

Reading and writing files are very useful skills for processing real
world data.

Reading Text Files

@ In Java, the most convenient mechanism for reading text is to use
the Scanner class.

Reading Text Files

@ In Java, the most convenient mechanism for reading text is to use
the Scanner class.

@ To read input from a disk file, the Scanner class relies on another
class, File, which describes disk files and directories.
(import java.io.File)
File inputFile = new File(fileAddress);

@ Connecting an Scanner to the file:
Scanner in = new Scanner (inputFile);

Reading Text Files

In Java, the most convenient mechanism for reading text is to use
the Scanner class.

To read input from a disk file, the Scanner class relies on another
class, File, which describes disk files and directories.

(import java.io.File)

File inputFile = new File(fileAddress);

Connecting an Scanner to the file:

Scanner in = new Scanner (inputFile);

When you are done processing a file, be sure to close the

Scanner object.
in.close();

Reading Text Files

@ In Java, the most convenient mechanism for reading text is to use
the Scanner class.

@ To read input from a disk file, the Scanner class relies on another
class, File, which describes disk files and directories.
(import java.io.File)
File inputFile = new File(fileAddress);

@ Connecting an Scanner to the file:
Scanner in = new Scanner (inputFile);

@ When you are done processing a file, be sure to close the
Scanner object.
in.close();

You can read from files in a same way that you read from the console.

Writing Text Files

@ To write output to a file, you construct a PrintWriter object with
the desired file name.
(import java.io.PrintWriter)
PrintWriter out = new PrintWriter (fileAddress);

@ If the output file already exists, it is emptied before the new data
are written into it. If the file doesn’t exist, an empty file is created.

Writing Text Files

To write output to a file, you construct a PrintWriter object with
the desired file name.

(import java.io.PrintWriter)

PrintWriter out = new PrintWriter (fileAddress);

If the output file already exists, it is emptied before the new data
are written into it. If the file doesn’t exist, an empty file is created.
You can use the familiar print, print1ln, and printf methods
with any PrintWriter object.

Writing Text Files

To write output to a file, you construct a PrintWriter object with
the desired file name.

(import java.io.PrintWriter)

PrintWriter out = new PrintWriter (fileAddress);

If the output file already exists, it is emptied before the new data
are written into it. If the file doesn’t exist, an empty file is created.
You can use the familiar print, print1ln, and printf methods
with any PrintWriter object.

When you are done processing a file, be sure to close the

PrintWriter object.
out.close();

Writing Text Files

@ To write output to a file, you construct a PrintWriter object with
the desired file name.
(import java.io.PrintWriter)
PrintWriter out = new PrintWriter (fileAddress);

@ If the output file already exists, it is emptied before the new data
are written into it. If the file doesn’t exist, an empty file is created.

@ You can use the familiar print, println, and printf methods
with any PrintWriter object.

@ When you are done processing a file, be sure to close the
PrintWriter object.
out.close();

You can write to files in a same way that you write to the console.

We may be in Trouble

@ [f the file provided for a Scanner doesn’t exist, a
FileNotFoundException occurs when the Scanner object is
constructed.

We may be in Trouble

@ [f the file provided for a Scanner doesn’t exist, a
FileNotFoundException occurs when the Scanner object is
constructed.

@ The PrintWriter constructor generates this exception if it
cannot open the file for writing.

We may be in Trouble

If the file provided for a Scanner doesn’t exist, a
FileNotFoundException occurs when the Scanner object is
constructed.

The PrintWriter constructor generates this exception if it
cannot open the file for writing.

The compiler insists that we specify what the program should do
in this situation.

To terminate the main method if the exception occurs:
(import java.io.FileNotFoundException)

public static void main(String[] args) throws
FileNotFoundException

Common Errors

@ Backslashes in File Names
e When you specify a file name as a string literal, and the name
contains backslash characters (as in a Windows file name), you
must supply each backslash twice:
File inputFile = new
File ("c:\\homework\\input.dat");

Common Errors

@ Backslashes in File Names
e When you specify a file name as a string literal, and the name
contains backslash characters (as in a Windows file name), you
must supply each backslash twice:
File inputFile = new
File ("c:\\homework\\input.dat");
@ Constructing a Scanner with a String

@ You are not allowed to write the file address directly into the
Scanner constructor:
Scanner in = new Scanner ("input.txt"); // Error

@ You should create a File object first and pass it to the Scanner
constructor:
Scanner in = new Scanner (new File("input.txt"));

Exercise (InvertFile. java)

Write a program that reads lines from a file and prints them into
another file in reverse order.

Working with Text

@ Reading Words
The next method reads a string that is delimited by white space.

Working with Text

@ Reading Words

The next method reads a string that is delimited by white space.
@ Reading Characters

Scanner in = new Scanner(. . .);

in.useDelimiter ("");

char ch = in.next ().charAt (0);

Working with Text

@ Reading Words

The next method reads a string that is delimited by white space.
@ Reading Characters

Scanner in = new Scanner(. . .);

in.useDelimiter ("");

char ch = in.next ().charAt (0);
@ Classifying Characters

The Character class has methods for classifying characters.

Method Accgs{aenggﬁzgzters

isDigit 0,1,2

islLetter A,B,C,a,b,c
isUpperCase A,B,C
isLowerCase a, b, ©

isWhiteSpace space, newline, tab

Exercise (Count . java)

Write a program that counts both number of digits and number of
letters in a file.

Working with Text

@ Reading Lines
The nextLine method reads an entire line including its

white-space characters (except the newline character).
String line = in.nextLine();

Working with Text

@ Reading Lines
The nextLine method reads an entire line including its
white-space characters (except the newline character).
String line = in.nextLine();

@ Scanning a String
You can use a Scanner object to read the characters from a
string:
Scanner lineScanner = new Scanner (line);

Working with Text

@ Reading Lines
The nextLine method reads an entire line including its
white-space characters (except the newline character).
String line = in.nextLine();

@ Scanning a String
You can use a Scanner object to read the characters from a
string:
Scanner lineScanner = new Scanner (line);

@ Converting Strings to Numbers
If a string contains the digits of a number, you use the
Integer.parselnt or Double.parseDouble method to obtain
the number value.

Working with Text

@ Avoiding Errors When Reading Numbers
if the input is not a properly formatted number, an “input
mismatch exception” occurs.
To avoid exceptions, use the hasNext Int method to screen the
input when reading an integer.
if (in.hasNextInt())

Formatting Output

additional options of the print f method

A format specifier has the following structure:
@ The first character is a %.
@ Next, there are optional “flags” that modify the format.

@ Next is the field width, the total number of characters in the field
(including the spaces used for padding), followed by an optional
precision for floating-point numbers.

@ The format specifier ends with the format type.

Flag

Formatting Output

Table 2 Format Flags
Meaning
Leftalignment
Show leading zeroes
Show a plus sign for positive numbers
Enclose negative numbers in parentheses
Show decimal separators

Convert letters to uppercase

Example
1.23followed by spaces
001.23
+1.23
(1.23)

12,300

1.23E+1

Code

Formatting Output

Table 3 Format Types
Type
Decimal integer
Fixed floating-point
Exponential floating-point

General floating-point
(exponential notation is used for
very large or very small values)

String

Example
123
12.30
1.23e+1

12.3

Tax:

Formatting Output

Example:
System.out.printf ("%-10s%10.2f", items[i] + ":",
prices[i]);

Cookies: 3.20
Linguine: 2.95
Clams: 17.29
A left-justified . dth 10 ith
: width width 10
string PN PN
e N
C 1 ams : 7 2%
Two digits after

the decimal point

Command Line Arguments

Usage

When you invoke a program from the command line (typing java and
the name of the program) you can also type in additional information
that the program can use. These additional strings are called
command line arguments (arguments for the main method).

Command Line Arguments

Usage

When you invoke a program from the command line (typing java and
the name of the program) you can also type in additional information
that the program can use. These additional strings are called
command line arguments (arguments for the main method).

Example:
java ProgramClass -v input.dat

@ The program receives two command line arguments: the strings
"-v" and "input".

Command Line Arguments

Usage

When you invoke a program from the command line (typing java and
the name of the program) you can also type in additional information
that the program can use. These additional strings are called
command line arguments (arguments for the main method).

Example:
java ProgramClass -v input.dat

@ The program receives two command line arguments: the strings
"-v" and "input".

@ The program receives its command line arguments in the args
parameter of the main method.
args[0]: "-v"
args[1]: "input.dat"

Exercise

Write a program that encrypts a file—that is, scrambles it so that it is
unreadable except to those who know the decryption method.
Encryption works as follows:

Replacing A with a D, B with an E, and so on,

Plaintext M e e t m e a t t h
BRI T T 2R T T T
h w k

Encryptedtext P h w p h d w

> <— (D

The program takes the following command line arguments:
@ An optional -d flag to indicate decryption instead of encryption.
@ The input file name
@ The output file name

EXCEPTION HANDLING

There are two aspects to dealing with program errors: detection and
handling.

Exception handling provides a flexible mechanism for passing control
from the point of error detection to a handler that can deal with the
error.

Throwing Exceptions

Usage
To signal an exceptional condition, use the throw statement to throw
an exception object.

Syntax throw exceptionObject;

Most exception objects
can be constructed with

if (amount > balance) an error message.

{
A new o "

. throw new I1TegalArgumentException("Amount exceeds balance");
exception object — galarg ption()
fhgz"fh::“::‘d balance = balance - amount;

) This line is not executed when

the exception is thrown.

The Java library provides many classes to signal all sorts of
exceptional conditions.

EXCEPTION hierarchy

Throuable
Error Exception
Classhot R,
TOException Found n
d Exception
Exception
T e FileNotFound | Arithmetic
Java.1o Exception Exception
Mal formedURL | ClassCast
Exception Exception
I1legal
UnknownHost NumberFormat
Exception [Argument <= "o, eptio
Exception
IndexOut
|- ofsounds g fem
Exception FvEL]
NoSuch
| LR InputMismatch
<~ Exception
Exception
| Nullpointer

Exception

Catching Exceptions

When you throw an exception, processing continues in an
exception handler.

Usage

Place the statements that can cause an exception inside a try block,
and the handler inside a catch clause.

21

Catching Exceptions

Syntax try
{

statement
statement

}
catch (Exception Class exception Object)
{

statement
statement
}
This construetor can throw a
FileNotFoundException.
try
{
Scanner in = new Scanner(new File("input.txt"));
String input = in.next(Q);
. process(input); is i i 1
When an I0Exception is thrown, } _— This fs the exception that was thrown

execution resumes here. \catch (IOException exception)
{

System.out.printIn("Could not open input file");

}
Additional catch clauses ——catch (Exception except) A FileNotFoundException
can appear here. Place { is a special case of an IOException.
wore specific exceptions System.out.printin(except.getMessage);
before wore general ones. 1

22

Catching Exceptions

try
{
String filename = . . .;
Scanner in = new Scanner(new File(filename));
String input = in.next(Q);
int value = Integer.parselnt(input);

iatch (IOException exception)

t exception.printStackTrace();

iatch (NumberFormatException exception)

i System.out.printin(exception.getMessage());

Three exceptions may be thrown in this try block:

o The Scanner constructor can throw a FileNotFoundException.
® Scanner.next can throw a NoSuchElementException.

® Integer.parseInt can throw a NumberFormatException.

23

Catching Exceptions

e If a FileNotFoundException is thrown, then the catch clause for the I0Exception is
executed. (If you look at Figure 2, you will note that FileNotFoundException is a
descendant of 10Exception.) If you want to show the user a different message for a
FileNotFoundException, you must place the catch clause before the clause for an
IOException.

o If a NumberFormatException occurs, then the second catch clause is executed.

A NoSuchElementException is 7ot caught by any of the catch clauses. The exception
remains thrown until it is caught by another try block.

24

Checked Exceptions

Definition

Checked exceptions are due to external circumstances that the
programmer cannot prevent. The compiler checks that your program
handles these exceptions.

25

Checked Exceptions

Definition

Checked exceptions are due to external circumstances that the
programmer cannot prevent. The compiler checks that your program
handles these exceptions.

In Java, the exceptions that you can throw and catch fall into three
categories:
@ Internal errors are reported by descendants of the type Error.

@ Descendants of RuntimeException, such as as
IndexOutOfBoundsExceptionorIllegal-
ArgumentException indicate errors in your code (Unchecked
Exceptions).

@ All other exceptions are checked exceptions. These exceptions
indicate that something has gone wrong for some external reason
beyond your control.

25

Catching Exceptions

try
{
File inFile = new File(filename);
Scanner in = new Scanner(inFile); // Throws FileNotFoundException

}
catch (FileNotFoundException exception) // Exception caught here

}
However, it commonly happens that the current method cannot handle the excep-
tion. In that case, you need to tell the compiler that you are aware of this exception
and that you want your method to be terminated when it occurs. You supply a
method with a throws clause.

public static String readData(String filename) throws FileNotFoundException

File inFile = new File(filename);
Scanner in = new Scanner(inFile);

26

The Finally Clause

Usage

Once a try block is entered, the statements in a £inally clause are
guaranteed to be executed, whether or not an exception is thrown.

Example:

PrintWriter out = new PrintWriter(filename);
try
{

}
finally
{

}

writeData(out);

out.close();

27

The Finally Clause

Syntax try
{

Statement
statement
}
finally
{
Statement
statement
}
This variable must be declared outside the try block
so that the finally clause can access it.
PrintWriter out = new PrintWriter(filename);
This code wmay try
throw exceptions. {
writeData(out);
}
finally
This code is {
always executed, out.close();
even if an exception oceurs. }

28

Exercise
Add exception handling to the previous exercise.

29

